Package: SSNbayes 0.1.0

Edgar Santos-Fernandez

SSNbayes: Bayesian Spatio-Temporal Analysis in Stream Networks

Fits Bayesian spatio-temporal models and makes predictions on stream networks using the approach by Santos-Fernandez, Edgar, et al. (2022)."Bayesian spatio-temporal models for stream networks" and Santos-Fernandez, Edgar, et al. (2023). "SSNbayes: An R Package for Bayesian Spatio-Temporal Modelling on Stream Networks". In these models, spatial dependence is captured using stream distance and flow connectivity, while temporal autocorrelation is modelled using vector autoregression methods.

Authors:Edgar Santos-Fernandez [aut, cre, cph]

SSNbayes_0.1.0.tar.gz
SSNbayes_0.1.0.zip(r-4.5)SSNbayes_0.1.0.zip(r-4.4)SSNbayes_0.1.0.zip(r-4.3)
SSNbayes_0.1.0.tgz(r-4.4-any)SSNbayes_0.1.0.tgz(r-4.3-any)
SSNbayes_0.1.0.tar.gz(r-4.5-noble)SSNbayes_0.1.0.tar.gz(r-4.4-noble)
SSNbayes_0.1.0.tgz(r-4.4-emscripten)SSNbayes_0.1.0.tgz(r-4.3-emscripten)
SSNbayes.pdf |SSNbayes.html
SSNbayes/json (API)
NEWS

# Install 'SSNbayes' in R:
install.packages('SSNbayes', repos = c('https://edgarsantos-fernandez.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/edgarsantos-fernandez/ssnbayes/issues

On CRAN:

5.35 score 15 stars 5 scripts 175 downloads 10 exports 136 dependencies

Last updated 3 months agofrom:44f320669f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 28 2024
R-4.5-winOKOct 28 2024
R-4.5-linuxOKOct 28 2024
R-4.4-winOKOct 28 2024
R-4.4-macOKOct 28 2024
R-4.3-winOKOct 28 2024
R-4.3-macOKOct 28 2024

Exports:collapsedist_weight_matdist_weight_mat_predsgenerate_osm_ssnkrigkrig2mylmpred_ssnbayesssnbayesssnbayes2

Dependencies:abindaskpassbackportsbase64encBHbitbit64blobbslibcachemcallrcheckmateclassclassIntclicodetoolscolorspacecpp11crayoncrosstalkcrsmetacurlDBIdescdigestdistributionaldplyre1071evaluatefansifarverfastmapfontawesomeforeachfsgamgenericsgeometriesgeosphereggplot2gluegridExtragtablehighrhtmltoolshtmlwidgetshttrhttr2igraphinlineisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelazyevalleafletleaflet.providerslifecycleloolubridatelwgeommagrittrMASSMatrixmatrixStatsmemoisemgcvmimemtsdimunsellnlmenumDerivopensslosmdatapillarpkgbuildpkgconfigplogrplyrpngposteriorprocessxPROJproj4proxypspurrrQuickJSRR6rappdirsrasterRColorBrewerRcppRcppEigenRcppParallelreprojrlangrmarkdownRSQLiterstanrvests2sassscalesselectrsfsfheaderssfnetworksspspmodelSSN2StanHeadersstringistringrsystensorAterratibbletidygraphtidyrtidyselecttimechangetinytexunitsutf8vctrsviridisLitewithrwkxfunxml2yaml

SSNbayes

Rendered fromSSNbayes.Rmdusingknitr::rmarkdownon Oct 28 2024.

Last update: 2021-10-12
Started: 2021-10-12

Readme and manuals

Help Manual

Help pageTopics
Collapses a SpatialStreamNetwork object into a data framecollapse
Combines two `sf` objects, the sensor locations and river network, in to an `sfnetwork`.convert_network_to_graph
Creates a list containing the stream distances and weightsdist_weight_mat
Creates a list of distances and weights between observed and prediction sitesdist_weight_mat_preds
Converts a dataframe containing sensor data in to an `sf` objectformat_sensor_data
Creates a list containing the stream distances and weightsgen_distance_matrices
Generates an Open Street Maps Spatial Stream Network.generate_osm_ssn
Creates an `sf` dataframe containing equally spaced points on a river networkgenerate_prediction_locations
Takes an `sf` object as input, and queries Open Street Maps for rivers and streams within the bounds of the sensor locations.generate_river_network
Internal function used to perform spatio-temporal prediction in R using a stanfit object from ssnbayes()krig
Internal function used to perform spatio-temporal prediction in R using a stanfit object from ssnbayes()krig2
A simple modeling function using a formula and datamylm
Internal function used to perform spatio-temporal prediction in R using a stanfit object from ssnbayes()pred_ssnbayes
Performs spatio-temporal prediction in R using an ssnbayes object from a fitted model.predict.ssnbayes
Performs spatio-temporal prediction in R using an ssnbayes object from a fitted model.predict.ssnbayes2
Fits a mixed linear regression model using Stanssnbayes
Fits a mixed linear regression model using Stan. This is an updated version of ssnbayes()ssnbayes2